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Abstract
Feature representations extracted from deep neural network-
based multilingual frontends provide significant improvements
to speech recognition systems in low resource settings. To ef-
fectively train these frontends, we introduce a data selection
technique that discovers language groups from an available
set of training languages. This data selection method reduces
the required amount of training data and training time by ap-
proximately 40%, with minimal performance degradation. We
present speech recognition results on 7 very limited language
pack (VLLP) languages from the second option period of the
IARPA Babel program using multilingual features trained on
up to 10 languages. The proposed multilingual features provide
up to 15% relative improvement over baseline acoustic features
on the VLLP languages.
Index Terms: Multilingual features, acoustic models, deep
neural networks, low resource speech recognition.

1. Introduction
Although acoustic models for state-of-the-art speech recogni-
tion systems are typically trained on several hundred hours of
task specific training data, in low resource scenarios only a
few hours of annotated training data are often available. In
these settings, it is possible to take advantage of transcribed
data from other languages to build multilingual acoustic mod-
els [1, 2]. With deep neural networks (DNNs) becoming pop-
ular for acoustic modeling, several variants of these networks
have been proposed for speech recognition in low resource set-
tings [3–15]. They typically fall into the following three broad
classes:

(a) Networks that use a common phoneme set covering all the
languages in the training set to train a multilingual acoustic
model [3, 4].

(b) Networks trained with multiple language specific output
layers to alleviate the burden of finding a common multi-
lingual phoneme set. These networks are first trained with
separate output layers for each language in the training set,
and then fine-tuned to the final target language [6–8].

(c) Networks trained as described above, but used to extract
multilingual bottleneck features for subsequent processing
instead of directly being used as acoustic models [5, 9, 10].

For training all these classes of networks, it is useful to
determine the right amount of multilingual training data and
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the languages that contribute most to training effective acous-
tic models [13, 14]. In this paper, we investigate an approach
to guide data selection for training multilingual feature front-
ends, in the spirit of the class (c) models described above. The
proposed data-driven technique, which is based on an analysis
of phoneme confusion matrices, allows for similarities between
languages available for training to be visualized. By requiring
limited amounts (≈ 3 hours) of transcribed data for analysis,
the method circumvents the need to transcribe large amounts of
data for training. Only candidate languages from the selected
language clusters now need to be transcribed for training the
multilingual feature frontends. Our experiments show that fron-
tends trained on only the selected languages can perform as well
as frontends trained on the entire available data. This leads to
close to 50% reduction in the amount of transcribed data and
the time required for training the frontend.

The remainder of the paper is organized as follows. In sec-
tion 2, we describe the multilingual feature frontend [15] used to
produce multilingual representations for IBM’s speech recogni-
tion and keyword search systems used in the Babel [16] Option
Period 2 (OP2) evaluation. Although this multilingual frontend
can be trained in advance of the evaluation period, training the
model on close to 1000 hours of speech from 10 languages is
time consuming. To increase the efficacy of this model, we in-
vestigate the use of multilingual data sampling. Section 3 de-
scribes the proposed data selection technique and its application
to an available pool of 10 languages [17–29, 29–33]. Section 4
describes experiments and results using the multilingual fron-
tend and the identified language clusters. The paper concludes
with a discussion in section 5.

2. The Multilingual Feature Frontend
The feature frontend used in this paper employs two DNNs
in a hierarchical fashion [15]. Similar to architectures pro-
posed in [5], while the first neural network in the hierarchy is
trained on acoustic features extracted from the data, the second
network models intermediate multilingual representations ex-
tracted from the bottleneck layer of the first network. Both the
networks are trained on data from several languages by using
language-specific output layers, instead of mapping the data to
a common phoneme set. The final output of this feature fron-
tend is a multilingual representation from the bottleneck layer
of the second network.

In our training framework, we use 40-dimensional log-Mel
filterbank features spliced together with a context of ±5 frames
as input to the first NN. The 80-dimensional bottleneck features
extracted from the first network are then used as features for the
second DNN. The context of these multilingual features is ex-
panded to ±10 frames but is then subsampled at a two frame
rate to produce a 400-dimension feature vector. Both DNNs use
up to 10 independent output softmax layers corresponding to 10

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-5983853



Figure 1: Identification of language clusters using scores from an LID system

training languages used in the Base and OP1 evaluation periods
of the Babel program [9]. These languages include Assamese,
Bengali, Pashto, Turkish, Tagalog, Vietnamese, Haitian Creole,
Lao, Tamil and Zulu. By sharing fully connected hidden layers
across all languages, while this architecture learns a multilin-
gual representation, it also has an advantage of not requiring
a common phoneme set that covers all the training languages.
Using the standard error back-propagation for minimizing the
cross-entropy objective function, the DNNs are trained on align-
ments produced by HMM-GMM acoustic models trained on
each language separately.

In the context of the Babel program, training a multilingual
feature frontend using 1000 hours of data across 10 training lan-
guages available is time consuming. It would hence be advan-
tageous to train a similar-performing network on significantly
fewer hours of speech. Multilingual data selection can also be
beneficial in a different setting. For a new low resource lan-
guage, if one had access to large amounts of untranscribed data
from several other languages, it would be cost effective to know
that transcribing a certain set of languages is more important
than attempting to transcribe all the languages to build a mul-
tilingual frontend. In the next section we show how language
clusters can be identified with up to 3 hours of transcribed data
from each of the available languages. The languages falling un-
der the dominant cluster can then be selected as candidates for
transcription rather than blindly transcribing all the data.

3. Detecting Language Clusters
To detect similarities between languages and subsequently lan-
guage clusters, we investigate the use of a data-driven technique
based on an analysis of confusion matrices. These confusion
matrices are estimated via two methods described below.

3.1. Language clusters using scores from a language identi-
fication network

In [14], to find similarities between languages, a language iden-
tification approach is proposed. This technique works by first
training a shallow neural network (NN) to predict language pos-
terior probabilities and then averaging the posterior scores over
frames. For a set of languages that are used to train the lan-
guage identification (LID) network, pairs of languages that are
close to each other are shown to have higher predicted poste-
riors. We explore this technique further by training a similar
LID network that discriminates between the context indepen-
dent phonemes of all the languages we wish to identify. We
then combine the scores corresponding to phonemes of each

Figure 2: Schematic of the hierarchical multilingual feature
frontend using selected languages

individual language to obtain global language scores. The com-
bined context independent phoneme set is created by collecting
context independent phonemes across all languages and keep-
ing them language specific, i.e. without merging any phonemes
although they might be acoustically similar.

As shown in Fig. 1 after an NN based LID system is trained,
feature frames of each language are passed through the network
to first derive posteriors of context independent phonemes of
languages, before phonemes of each individual language are
collapsed to a single language score. After averaging the lan-
guage scores over the number of input feature frames in each
language, the scores are then used to populate a language sim-
ilarity matrix. The language similarity matrix is further used
to construct a graph where individual nodes correspond to lan-
guages and connecting arcs are weighted by scores from the
language similarity matrix. Spectral clustering is then applied
to this graph to form language clusters, by solving a convex re-
laxation of the normalized graph cut problem [34].

To train the LID network, only a very small subset of the
training data of each language is used. In our experiments we
use about 3 hours of transcribed data for each language (2% of
the available data). The remaining data is only used or tran-
scribed if it belongs to a dominant language cluster, hence sav-
ing on the cost of transcribing large data sets. For the 10 Babel
training languages in hand, we train an LID system on about
30 hours of speech using about 3 hours of speech from each
language. A network with 3 hidden layers is trained to discrim-
inate between 435 context independent phonemes, which are
combined during test time to produce 10 dimensional language
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Figure 3: Identification of language clusters using scores from individually trained neural networks

posteriors. These language posteriors are then averaged over all
input frames and are used to populate a language similarity ma-
trix. After constructing a language graph and automatically par-
titioning it, we pick languages in the dominant cluster to train a
hierarchical multilingual feature frontend as shown in Fig. 2.

By pooling together languages, although this approach can
jointly discriminative between languages, we observe that as
the number of the languages being compared increases, the lan-
guage scores tend to spread out among classes. Empirically
we notice that for fewer than 3 languages this approach can
predict strong relationships. However for settings with 10 lan-
guages, the final scores across languages are often uniformly
spread out, limiting the discovery of strong relationships be-
tween languages. A second limitation of this approach is that
the LID system needs to be retrained every time a new language
is added to the multilingual pool for selection since the LID NN
is jointly trained across all languages. To alleviate these lim-
itations, we investigate how individual language networks can
be trained and combined to produce similarity scores useful for
identifying language clusters.

3.2. Language clusters using scores from individual lan-
guage networks

To discover language clusters from individual language net-
works, we begin by estimating confusion matrices between lan-
guage pairs. To create a confusion matrix between two lan-
guagesLA andLB, with phoneme sets A and B, we train neural
networks on both languages. A network trained on LA for ex-
ample, estimates posterior probabilities of speech sounds in A,
conditioned on the input feature vectors. We then forward pass
the data in LB through the trained NN. To understand the rela-
tionship between phonemes, we treat the phoneme recognition
system as a discrete, memory-less, noisy communication chan-
nel with the phonemes in B as source symbols to the system.
Using the recognized phonemes belonging to A at the output
of the recognizer as received symbols, confusion matrices that
characterize the data sets are then computed.

Each time a feature vector corresponding to phoneme bi ∈
B is passed through the trained NN, posterior probabilities cor-
responding to all phonemes in set A are obtained at the out-
put of the NN. We treat each of these posterior probabilities
as soft-counts to populate a phoneme confusion matrix (CM).
From a fully-populated confusion matrix CM , the following

counts can be derived. Entry (i, j) of the confusion matrix cor-
responds to the soft count aggregate CM(i, j) of the total num-
ber of times phoneme bi was recognized as aj . Marginal count
CM(i) of each row is the total number of times phoneme bi

occurred in the task-specific data. Similarly count CM(j) of
each column is the total number of times phoneme aj of the
task-independent data set was recognized. C is the total num-
ber of counts in the confusion matrix.

Given such a CM, a useful information theoretic quantity
that can be used to quantify relationships between the phonemes
of each language is the empirical pointwise mutual informa-
tion [35]. In [36], the use of this quantity in conjunction with
confusion matrices has been shown. For an input alphabet A
and output alphabet B, using the count based confusion matrix,
the empirical pointwise mutual information between two sym-
bols ai from A and bj from B is expressed as

ÎAB(ai, bj) = log
Nij .N

Ni.Nj
, (1)

where Nij is the number of times the joint event (A =
ai, B = bj) occurs and Ni, Nj are marginal counts

P
j Nij

and
P

i Nij . N is the total number of events.
Using our soft count based confusion matrix between two

phoneme sets A and B, we similarly define the empirical point-
wise mutual information between phoneme pairs (ai, bj) as

ÎAB(ai, bj) = log
CM(i, j).C

CM(i).CM(j)
, (2)

using quantities defined earlier.
Once an NN is trained on each language, a per-phoneme

mutual information (MI) matrix for every language pair can
then be computed. Entry (i, j) for one such matrix contains the
MI score between phoneme i of the first language and phoneme
j of the second language. We then compute the Frobenius norm
of the matrix and normalize it with the total number of entries
to arrive at a global MI score between the two languages.

For each of the Babel training set of languages at hand, we
train a shallow 2-layer NN with 3 hours of transcribed data us-
ing context independent phonemes. After these NNs have been
trained, a 10×10 MI language similarity matrix over the 10 lan-
guages is computed. The (i, j)-th entry of this matrix gives
the information theoretic similarity between languages i and j
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with a higher score signifying greater similarity. As shown in
Fig. 3, the language similarity matrix is further used to con-
struct a language graph from which clusters are identified as
described earlier. Languages in the dominant cluster are then
used to train a hierarchical multilingual feature frontend. Al-
though languages are not jointly discriminated in this approach
of constructing language similarities using individual language
nets, pairwise language similarities are enhanced by converting
the posterior based scored into mutual information based scores.
This approach also has an advantage of being able to scale more
easily as no model is jointly trained on all languages. The lan-
guage similarity matrix however needs to be re-estimated (a new
row/column entry needs to be estimated for each new language).

After the application of the clustering algorithm on the LID
based graph, we discovered two dominant clusters - {Pashto,
Tagalog, Turkish, Bengali, Assamese, Zulu} and {Lao, Haitian
Creole, Tamil, Vietnamese}. The graph based on scores from
individual languages on the other hand is clustered into {Pashto,
Tagalog, Haitian Creole, Lao, Tamil and Zulu} and {Turkish,
Bengali, Assamese, Vietnamese}. We hypothesize that the 6
language clusters discovered by the proposed techniques will
be a useful representative set for extracting multilingual fea-
tures. Since the technique has nearly halved the amount of
training data, the multilingual frontend training time is also re-
duced by close to 50%. If none of the 10 languages were fully
transcribed, with just 2% of the data (3 hours×10), this tech-
niques suggests that only data from 6 languages needs to be
transcribed to create an effective multilingual frontend. This re-
sults in a 40% reduction in the data transcription and processing
effort. In the next section, we evaluate the effectiveness of the
proposed technique.

4. Experiments and Results
To evaluate the performance of multilingual frontends trained
on various language groups, we use features extracted from
these frontends on 6 VLLP languages - Swahili, Kurmanji, Ce-
buano, Kazakh, Telugu and Lithuanian, each with just 3 hours
of transcribed data. Word Error Rates (WER %) are reported
on a 3 hour tuning set. We start by training baseline speaker-
independent (SI) acoustic models on 13-dimension PLP fea-
tures with speaker-based mean and variance normalization. A
context of 9 frames is spliced together and projected to a 40-
dimensional feature space using linear discriminant analysis
(LDA), and the class-conditional distributions are further diag-
onalized using a global, semi-tied covariance (STC) transform.

In the following SI multilingual step, the PLP+LDA+STC
features described above are fused with ML features, trans-
formed by LDA and STC, and then used as input for a two-
fold DNN pipeline. In each fold, a new alignment is gener-
ated with the current model and a new decision tree is built on
top of the alignment. The DNN training procedure comprises :
(1) discriminative layer-wise pre-training and (2) training with
cross-entropy criterion. The DNN comprises 3 hidden layers of
1024 ReLU units, followed by one 1024-unit sigmoid layer and
a 1000-unit softmax layer. The baseline language models (LM)
are Kneser-Ney (KN)-smoothed bigram models with a 5K vo-
cabulary size. All the acoustic models are hybrid models trained
using the IBM Attila speech recognition toolkit [37].

Table 1 shows the Word Error Rates (WER %) with the
baseline acoustic features (PLP) and multilingual features ex-
tracted from a feature frontend trained on 10 languages (ML-
10) [15]. For all the languages, multilingual features provide
significant gains (up to 15% relative improvements) over the

Table 1: WER (%) using from various multilingual frontends.
Language PLP ML-10 SMP RND LID IL
Swahili 75.2 66.0 67.5 68.0 67.6 66.8

Kurmanji 84.1 78.2 79.5 79.5 79.1 79.2
Tok Pisin 64.8 53.8 56.2 57.1 56.7 54.8
Cebuano 78.1 70.5 72.1 72.0 71.9 71.3
Kazakh 79.1 72.9 74.0 74.5 73.7 73.5
Telugu 87.6 82.3 83.7 84.4 83.6 82.9

Lithuanian 73.0 65.9 67.4 67.4 67.2 67.2

basic features. In the next set of experiments, we train a set of
multilingual frontends on the clusters identified using the two
techniques described earlier. These frontends have training data
sampled from the full training set of 10 languages in two differ-
ent ways. They include -

(a) A frontend on language clusters identified using the LID
based NN (LID)

(b) A frontend on language clusters identified using mutual in-
formation scores from individually trained NNs (IL)

Table 1 shows the performance of these feature frontends in
comparison with conventional PLP features and multilingual
features from various frontends - (i) trained on all the languages
(ML-10), (ii) trained using up to 50% of data, uniformly sam-
pled across all the 10 languages (SMP) [15] and (iii) trained on
5 randomly selected languages - Zulu, Turkish, Haitian Creole,
Tagalog and Assamese (RND). The following interesting obser-
vations can be drawn from these results -

(a) With only 50% of the data, the frontends trained on the
discovered clusters perform almost as well as the frontend
trained on all of the data.

(b) In most cases the frontend trained using scores from in-
dividually trained NNs performs better than the frontend
trained using scores from the LID based NN. This probably
confirms an earlier hypothesis that the LID based system
cannot perform well as the number of languages increases.

(c) Frontends trained on the identified language clusters almost
always perform better than frontends trained on random se-
lection of data.

(d) Since all these models use only 60% of the data, this result
highlights the need for selecting the right set of languages
for training. The training time for the proposed frontends
is around 10 days compared to 21 days for the ML-10 fron-
tends [15]. There is clearly hence a significant reduction in
training time with the proposed technique as well.

5. Conclusions
In this paper we have introduced a simple technique to perform
data selection across languages for building multilingual fron-
tends using confusion matrices. With the proposed technique
we identify language clusters and show that models trained on
selected candidate languages can produce very comparable per-
formances with significantly less training time and data (close
to 50% reduction in both training time and data). In this work
we have assumed that the frontend is built independent of the
final target language. It will be useful to investigate as future
work, how languages can be selected based on prior knowledge
of the final target language.
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